
LAYERED COMPOUNDS XXX.¹⁾ UNUSUAL REACTION OF TRIPLE LAYERED CYCLOPHANES CONTAINING ANTHRACENE NUCLEUS.

Toshihiro TOYODA, Akio IWAMA, Yoshiteru SAKATA, and Soichi MISUMI* The Institute of Scientific and Industrial Research, Osaka University Suita, Osaka, Japan

(Received in Japan 12 July 1975; received in UK for publication 5 August 1975) Recently, Korte and his colleagues² reported the Diels-Alder reaction of benzene and its derivatives with hexachloropentadiene under high pressure to give 1:2 adducts. This is the first example of dienophilic behavior of benzene. We now wish to describe another example of such an unusual reaction under atmospheric pressure, which was observed in the course of synthetic study of triplelayered anthracenophanes (3a) and (3b) in order to investigate transannular electronic interaction.

Pyrolysis of equimolar mixture of quarternary ammonium hydroxides (1) and (2a) were carried out in boiling xylene in the presence of catalytic amount of phenothiazine. After separation of polymers by filtration the reaction mixture was chromatographed twice on alumina to afford a white solid in a yield of 8.7% (colorless prisms from benzene, mp 238-240.5°C). Although the product gave molecular formula $C_{3+}H_{30}$ coinciding with the structure (3a) (by elemental analysis, mass spectrum, and osmometric molecular weight determination), its electronic spectra did not support the structure containing anthracene nucleus. The spectral data of the product are as follows: Mass spectrum: $438(M^+)$, 334, 234, 204; UV(THF): 317(1,370), 389 sh(1,830), 268(3,940), 235.5 sh nm $(\varepsilon$ 15,700); ¹H-NMR(CDCl₃): δ 1.0-3.0(m, 16H), 4.36(s, 1H), 6.7-7.4 ppm(m, 13H); ¹³C-NMR (CDCl₃, TMS int): 21.03-37.90(methylene, 8 peaks), 51.07-58.53(tertiary and quarternary, 4 peaks), 120.24-139.88 ppm(olefinic and aromatic, 19 peaks). Instead of structure (3a), two possible structures (4a)-I and (4a)-II can be presumed for the product. The latter structure (4a)-II with C₂ symmetry can

be excluded out by the fact that in ¹H-NMR spectrum the signal at δ 4.36 ppm corresponds to only one proton absorbtion and in ¹³C-NMR spectrum there exist thirty-one different signals. Accordingly, (4a)-I remains to be the most reasonable structure for (4a). In order to confirm above assignment, an X-ray crystallographic analysis of (4a) was carried out.

Crystal data are: Space group $P2_1/c$; Cell dimensions: a=15.896(3), b=8.937 (2), c=18.575(3) Å and β =120.31(2)°; z=4. A total of 3053 independent reflections was collected on a Rigaku full automatic four-circle diffractometer with Mo-K α radiation. The structure was solved by a program MULTAN and has been refined by block-diagonal least-square method to an R-factor of 0.085. The resulting molecular structure was confirmed to be (4a)-I as shown in the Figure.

Dimethyl derivative (4b) was also prepared in a similar manner as described for (4a) and showed very similar spectral data and X-ray diffraction pattern³ ((4b): colorless prisms from benzene, mp 220-235°C, Mass 466(M⁺), 334, 262, 204, 132; UV(THF) 316.5 sh(1,460), 295.5(1,870), 275 sh(3,350), 268 sh(3,860), 238 sh nm(ε 12,000); ¹H-NMR(CDCl₃) δ 0.8-3.3(m, 16H), 4.50(s, 1H), 6.4-7.3 ppm(m, 13H)).

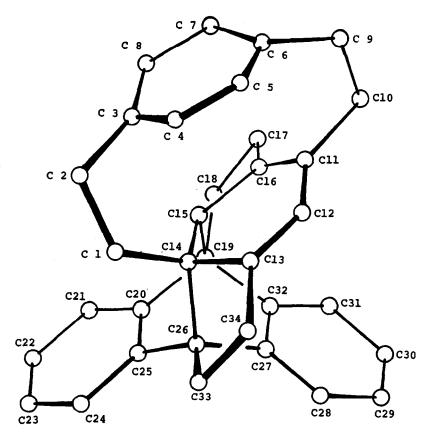


Figure Projection of (4a) along b-axis.

	Table	Bond lengths in A	•		
C 1 C 2	1.566	C 1 C14	1.571	C 2 C 3	1.514
C 3 C 4	1.373	С 3 С 8	1.393	C 4 C 5	1.393
C 5 C 6	1.380	C 6 C 7	1.388	С 6 С 9	1.515
с 7 с 8	1.384	C 9 C10	1.587	C10 C11	1.519
C11 C12	1.484	Cll Cl6	1.335	C12 C13	1.327
Cl3 Cl4	1.503	C13 C34	1.543	C14 C15	1.509
Cl4 C26	1.599	C15 C16	1.483	Cl5 Cl9	1.569
C16 C17	1.523	C17 C18	1.581	C18 C19	1.532
C19 C20	1.523	C19 C32	1.513	C20 C21	1.395
C20 C25	1.405	C21 C22	1.393	C22 C23	1.358
C23 C24	1.397	C24 C25	1.395	C25 C26	1.513
C26 C27	1.526	C26 C33	1.539	C27 C28	1.396
C27 C32	1.389	C28 C29	1.374	C29 C30	1.355
C30 C31	1.417	C31 C32	1.387	C33 C34	1.576

able Bond lengths in A.

Therefore, it is concluded that (4b) has the same framework as (4a). The formation of the structure (4a)-I clearly indicates that the inner benzene nucleus reacts intramolecularly as a dienophile with closely faced anthracene nucleus. On the other hand doublelayered anthracenophane (5)⁴ does not undergo such an intramolecular [π 4s + π 2s] cycloaddition as do

(5)

triple-layered ones. This diffrent reactivity between (3) and (5) may mainly be attributed to a marked strain of the inner benzene nucleus in (3).

References

- 1) Part XXIX: T. Umemoto, S. Satani, Y. Sakata, and S. Misumi, to be submitted.
- 2) W. Jarre, D. Bieniek, and F. Korte, Angew. Chem., 87, 201 (1975).
- 3) Crystals of (4b) belong to the same space group $(P2_1/C)$ and have cell constants similar to those of (4a).
- 4) A. Iwama, T. Toyoda, T. Otsubo, and S. Misumi, Chemistry Lett., 1973, 587.